Computational Fluid Dynamics Analysis of an Ideal Anguilliform Swimming Motion
نویسندگان
چکیده
There is an ongoing interest in analyzing the flow characteristics of swimming fish. Biology has resulted in some very efficient motions and formulating these motions is of interest to engineers. One such motion theory was written previously by Vorus and Taravella, and the University of New Orleans was given funds by the Office and Naval Research to test this theory. Computational fluid dynamics analysis was done using ANSYS Fluent to compare expected flow properties with the computed values. Biomimetic CFD, anguilliform motion, ANSYS Fluent
منابع مشابه
توسعه یک مدل سه بعدی روبات ماهی و مقایسه آزمایشگاهی نتایج
Biomimetic underwater vehicle design has attracted the attention of researchers for various reasons such as ocean investigation, marine environmental protection, exploring fish behaviors and detecting the leakage of oil pipe lines. Fish and other aquatic animals have good maneuverability and trajectory following capability. They also efficiently stabilize themselves in currents and surges leave...
متن کاملDisentangling the functional roles of morphology and motion in the swimming of fish.
In fishes the shape of the body and the swimming mode generally are correlated. Slender-bodied fishes such as eels, lampreys, and many sharks tend to swim in the anguilliform mode, in which much of the body undulates at high amplitude. Fishes with broad tails and a narrow caudal peduncle, in contrast, tend to swim in the carangiform mode, in which the tail undulates at high amplitude. Such fish...
متن کاملNumerical simulation of flow hydrodynamic around dolphin body in viscous fluid
The biomimetic and hydrodynamic study of aquatic animals is one of the most challenging computational fluid dynamics topics in recent studies due to the complexity of body geometry and the type of flow field. The movement of the aquatic body, and particularly the tail section and the corresponding movement of fluid around the body, causes an unsteady flow and requires a comprehensive study of t...
متن کاملCenter of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion.
Studies of center of mass (COM) motion are fundamental to understanding the dynamics of animal movement, and have been carried out extensively for terrestrial and aerial locomotion. But despite a large amount of literature describing different body movement patterns in fishes, analyses of how the center of mass moves during undulatory propulsion are not available. These data would be valuable f...
متن کاملOn the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
We carry out fluid-structure interaction simulations of self-propelled virtual swimmers to investigate the effects of body shape (form) and kinematics on the hydrodynamics of undulatory swimming. To separate the effects of form and kinematics, we employ four different virtual swimmers: a carangiform swimmer (i.e. a mackerel swimming like mackerel do in nature); an anguilliform swimmer (i.e. a l...
متن کامل